GUIAS DE AR FABRICADAS EM FIBRA DE VIDRO

Indispensável valor agregado em hidro-geradores modernos


Em 1891, quando Charles E. L. Brown e Michael Dolivo-Dobrowolsky construíram o primeiro gerador trifásico da história da humanidade (Figura 1), não tinham ideia da sua importância no sistema de resfriamento do gerador.

Figura 1 – Gerador trifásico Oerlikon, construído em 1891 para a International Electro-Technical Exhibition de Frankfurt / Alemanha (foto-arquivo pessoal de Dr. J. Rocha).

Essa tecnologia, inspirada no trabalho de Nikola Tesla e lapidada por Dolivo-Dobrowolsky, na configuração de sistema trifásico, rapidamente alcançou projeção mundial.

Tudo indica que o ápice da sua maturidade tecnológica ocorreu somente 90 anos depois, no final da década de 1980, com a conclusão da Central Hidrelétrica de Grand Coulee (United States Bureau of Reclamation) dotada com 6 unidades, 3 de 805 MW – 85,7 rpm fabricadas pela General Electric e 3 de 690 MW – 72 rpm, fabricadas pela Westinghouse Electric Corporation [1] [2].

Embora a solução de enrolamento estatórico diretamente resfriado com água já fosse conhecida, o ponto alto desse salto tecnológico foi a opção por um sistema de resfriamento totalmente em circuito fechado de ar, com trocadores de calor ar-água para promover o seu resfriamento.

Ainda mais fascinante foi a opção de inovar a fabricação das guias de ar em “fiberglass” (compósito de matriz polimérica reforçada com fibra de vidro, popularmente conhecida como fibra de vidro). Na Figura 2, que ilustra a secção transversal do gerador de Grand Coulee fornecido pela Westinghouse[1], destacam-se as guias de ar superior e inferior com aproximadamente 19 metros de diâmetro.

Figura 2 – Secção transversal do gerador de 690 MW – 72 rpm fabricado pela Westinghouse
Electric Corporation, com destaque para as guias de ar superior e inferior fabricadas em fibra de vidro[1].
As guias de ar, até então tradicionalmente fabricadas em chapa metálica apresentavam limitações tanto construtivas como eletromagnéticas, dentre as quais podemos destacar:

  • A construção de uma guia de ar de 19 metros de diâmetro com uma tolerância inferior a 5 milímetros (tolerância de 0,03%) em chapa metálica por si só já representa um enorme desafio;
  • As soldas e reforços estruturais devem ser muito bem balanceados para se obter uma expansão térmica uniforme;
  • Tal desafio torna-se ainda maior quando a guia de ar tem que ser dividida em segmentos para limitar o seu peso e facilitar a sua manipulação durante o transporte e a montagem;
  • Ainda, por se tratarem de segmentos construídos em chapa metálica estrutural, os mesmos estão sujeitos aos efeitos de indução eletromagnética que, se não forem controlados adequadamente, provocam aquecimentos nocivos e expansões descontroladas indesejáveis e, por conseguinte, acarretam perdas permanentes de energia que comprometem o rendimento da máquina;
  • Vale ressaltar que muitas vezes o aquecimento excessivo das guias metálicas de ar tem promovido a deterioração da isolação das cabeças de bobinas, não sendo incomum a ocorrência de sinistros atribuídos a esta causa-raiz.

Neste contexto, a introdução da tecnologia em fibra de vidro trouxe as seguintes vantagens:

  • A construção de grandes diâmetros de guias de ar apresenta uma nova tecnologia que facilita a sua manufatura. Uma vez definido o número de segmentos em função do peso, a precisão de cada peça estará limitada à tolerância construtiva da matriz de prensagem e modelagem em que se promove a cura de cada peça;
  • As guias fabricadas em compósito, devido à sua flexibilidade arquitetônica permitem grande variedade de design, repetitividade dimensional, baixa termo-expansão, dentre outras vantagens, as quais são associadas a um menor investimento em ferramental, o que é um fator preponderante na composição do custo final do produto;
  • O uso de um molde (ferramental) uniformiza a geometria de todos os segmentos, o que permite obter com êxito as tolerâncias exigidas no projeto;
  • Como o peso específico da fibra de vidro é cerca de cinco vezes inferior ao da chapa metálica, podem ser fabricados segmentos maiores, possibilitando reduzir o número de componentes e peso do conjunto, condição essa que é muito favorável nos processos de manutenção do gerador;
  • Uma vez que as peças em fibra de vidro não apresentam cantos vivos, muito comuns em peças metálicas, a sua aplicação é muito bem aceita, pois diminui o risco de acidentes por elementos cortantes;
  • O ganho fundamental na utilização das guias de ar em fibra de vidro é devido à sua propriedade de ser inócua à ação da indução eletromagnética que, nas peças metálicas, causam aquecimento por circulação de correntes de Foucault;
  • Além disso, as guias de ar podem ser aproximadas das cabeças de bobina tanto quanto for necessário para um melhor direcionamento do ar de resfriamento. A Figura 3 ilustra um gerador com ventilação axial que demanda guias de ar customizadas, sujeitas a uma tolerância interna radial de altíssima precisão, pois o rendimento do ventilador axial depende em grande parte da distância radial entre a aleta do ventilador e a guia de ar (folga menor que 4 milímetros[4]).
Figura 3 – Guias de ar para aplicação em ventilação axial, com destaque na folga entre o guia de ar (vermelho) e a aleta do ventilador (amarelo) (fonte: divulgação Alstom®)

A confecção de guias de ar em fibra de vidro tem reduzido então as limitações conceituais apresentadas nas guias de ar com estrutura metálica, e a sua aplicação nos sistemas de resfriamento de máquinas rotativas converteu-se em uma realidade mundial.

Atualmente as guias de ar em fibra de vidro podem ser encontradas:

a. Nos maiores geradores da história, com estrutura simples e diâmetros superiores a 15 metros (Figura 4)

b. Em máquinas especiais em que a guia de ar tem uma finalidade essencial (Figura 5), nas quais participam de estudos avançados empregando CFD (Computational Fluid Dynamics) aplicado a grandes hidro-geradores[3].

Figura 4 – Secção transversal do gerador da 3ª maior central hidrelétrica da China, Xiang Jia Ba 889 MVA e guia de ar com 19 metros de diâmetro interno (fonte: divulgação Alstom®)

Figura 5 – Modelos numéricos destinados a estudos de CFD aplicados a grandes hidro geradores, destaque em verde para a importância das guia de ar[3].
Desde 1980, os profissionais da AEPI do Brasil, pioneira em tecnologia de fibra de vidro, têm desenvolvido tecnologia própria e domínio na fabricação de guias de ar segmentadas. Além de toda a linha de produção dos segmentos, possui uma área específica dedicada à pré-montagem dos segmentos e verificação da circularidade construtiva exigida no projeto de seus clientes.

Dentre os seus principais fornecimentos podem ser mencionados:

Referências bibliográficas

[1] Horn, F. J. & Johrde, P. S. – Electrical and Mechanical Design Features of the 615 MVA Generators for Grand Coulee Dam. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-94, No. 6, November/December 1975, pages 2015-2022.

[2] Moore, V. A. – Experience with Large Hydro-Generators at Grand Coulee. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, No. 10, October 1983, pages 3265-3270.

[3] Klomberg, S. et al – Comparison of CFD Analyzing Strategies for Hydro Generators, 978-1-4799-4389-0/14/$31.00 ©2014 IEEE

[4] Eck, Bruno, Ventilatoren – Entwurf und Betrieb der Radial – Axial – und Querstromventilatoren, Springer, 2003.

Texto de Autoria de:

Jorge Johnny Rocha Echeverria
Jorge Johnny Rocha Echeverria